Grain boundaries in granular materials-A fundamental limit for thermal stability

2013 
We show that thermal-stability and the associated switching field in well segregated, nanoscale granular materials is explained by grain boundary and interface effects. Grain boundaries pose a fundamental limit on scaling rooted in their chemical and morphological structure, while exchange interactions across interfaces cause the switching to deviate from the expected coherent Stoner-Wohlfarth behaviour. Measurements and simulations of CoCrPt-systems show a clear shift in applied field angle behaviour, arising from exchange-coupling between magnetic-phases, while the quantitative switching field can only be explained by a transition layer surrounding the grains. These results are potentially significant for Heat-Assisted-Magnetic Recording and Bit-Patterned-Media Recording.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    9
    Citations
    NaN
    KQI
    []