The origin of capacity fade in the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) microsphere positive electrode: an operando neutron diffraction and transmission X-ray microscopy study

2016 
The mechanism of capacity fade of the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) composite positive electrode within a full cell was investigated using a combination of operando neutron powder diffraction and transmission X-ray microscopy methods, enabling the phase, crystallographic, and morphological evolution of the material during electrochemical cycling to be understood. The electrode was shown to initially consist of 73(1) wt % R3m LiMO2 with the remaining 27(1) wt % C2/m Li2MnO3 likely existing as an intergrowth. Cracking in the Li2MnO3·LiMO2 electrode particle under operando microscopy observation was revealed to be initiated by the solid-solution reaction of the LiMO2 phase on charge to 4.55 V vs Li+/Li and intensified during further charge to 4.7 V vs Li+/Li during the concurrent two-phase reaction of the LiMO2 phase, involving the largest lattice change of any phase, and oxygen evolution from the Li2MnO3 phase. Notably, significant healing of the generated cracks in the Li2MnO3·LiMO2 electrode particl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    74
    Citations
    NaN
    KQI
    []