Brain-synthesized estrogens regulate cortical migration in a sexually divergent manner

2019 
Abstract Estrogens play an important role in the sexual dimorphisms that occur during brain development, including the neural circuitry that underlies sex-typical and socio-aggressive behaviors. Aromatase, the enzyme responsible for the conversion of androgens to estrogens, is expressed at high levels during early development in both male and female cortices, suggesting a role for brain-synthesized estrogens during corticogenesis. This study investigated how the local synthesis of estrogens affects neurodevelopment of the cerebral cortex, and how this differs in males and females by knockdown expression of the Cyp19a1 gene, which encodes aromatase, between embryonic day 14.5 and postnatal day 0 (P0). The effects of Cyp19a1 knockdown on neural migration was then assessed. Aromatase was expressed in the developing cortex of both sexes, but at significantly higher levels in male than female mice. Under basal conditions, no obvious differences in cortical migration between male and female mice were observed. However, knockdown of Cyp19a1 increased the number GFP-positive cells in the cortical plate, with a concurrent decrease in the subventricular zone/ventricular zone in P0 male mice. The opposite effect was observed in females, with a significantly reduced number of GFP-positive cells migrating to the cortical plate. These findings have important implications for our understanding of the role of fetal steroids for neuronal migration during cerebral cortex development. Moreover, these data indicate that brain-synthesized estrogens regulate radial migration through distinct mechanisms in males and females.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []