Automatic Text Summarization Using Reinforcement Learning with Embedding Features

2017 
An automatic text summarization system can automatically generate a short and brief summary that contains a main concept of an original document. In this work, we explore the advantages of simple embedding features in Reinforcement leaning approach to automatic text summarization tasks. In addition, we propose a novel deep learning network for estimating Q-values used in Reinforcement learning. We evaluate our model by using ROUGE scores with DUC 2001, 2002, Wikipedia, ACL-ARC data. Evaluation results show that our model is competitive with the previous models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    13
    Citations
    NaN
    KQI
    []