Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin-induced bronchopulmonary dysplasia in neonatal rats

2009 
Whether inhaled nitric oxide (iNO) prevents the development of bronchopulmonary dysplasia (BPD) in premature infants is controversial. In adult rats, bleomycin (Bleo) induces lung fibrosis and pulmonary hypertension, but the effects of Bleo on the developing lung and iNO treatment on Bleo-induced neonatal lung injury are uncertain. Therefore, we sought to determine whether early and prolonged iNO therapy attenuates changes of pulmonary vascular and alveolar structure in a model of BPD induced by Bleo treatment of neonatal rats. Sprague-Dawley rat pups were treated with Bleo (1 mg/kg ip daily) or vehicle (controls) from day 2 to 10, followed by recovery from day 11 to 19. Treatment groups received early (days 2–10), late (days 11–19), or prolonged iNO therapy (10 ppm; days 2–19). We found that compared with controls, Bleo increased right ventricular hypertrophy (RVH), and pulmonary arterial wall thickness, and reduced vessel density alveolarization. In each iNO treatment group, iNO decreased RVH (P < 0.01)...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    42
    Citations
    NaN
    KQI
    []