Direct Room Temperature Welding and Chemical Protection of Silver Nanowire Thin Films for High Performance Transparent Conductors

2018 
Silver nanowire (Ag-NW) thin films have emerged as a promising next-generation transparent electrode. However, the current Ag-NW thin films are often plagued by high NW–NW contact resistance and poor long-term stability, which can be largely attributed to the ill-defined polyvinylpyrrolidone (PVP) surface ligands and nonideal Ag–PVP–Ag contact at NW–NW junctions. Herein, we report a room temperature direct welding and chemical protection strategy to greatly improve the conductivity and stability of the Ag-NW thin films. Specifically, we use a sodium borohydride (NaBH4) treatment process to thoroughly remove the PVP ligands and produce a clean Ag–Ag interface that allows direct welding of NW–NW junctions at room temperature, thus greatly improving the conductivity of the Ag-NW films, outperforming those obtained by thermal or plasmonic thermal treatment. We further show that, by decorating the as-formed Ag-NW thin film with a dense, hydrophobic dodecanethiol layer, the stability of the Ag-NW film can be gr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    89
    Citations
    NaN
    KQI
    []