Genome-wide mapping implicates R-loops in lineage-specific processes and formation of DNA break hotspots in neural stem/progenitor cells

2021 
Recent work has revealed classes of recurrent DNA double-strand breaks (DSBs) in neural stem/progenitor cells, including transcription-associated, promoter-proximal breaks and recurrent DSB clusters in late-replicating, long neural genes. However, the mechanistic factors promoting these different classes of DSBs in neural stem/progenitor cells are not understood. Here, we elucidated the genome-wide landscape of DNA:RNA hybrid structures called "R-loops" in primary neural stem/progenitor cells in order to assess their contribution to the different classes of DNA break "hotspots". We report that R-loops in neural stem/progenitor cells are associated primarily with transcribed regions that replicate early and genes that show GC skew in their promoter region. Surprisingly, the majority of genes with recurrent DSB clusters in long, neural genes does not show substantial R-loop accumulation. We implicate R-loops in promoter-proximal DNA break formation in highly transcribed, early replicating regions and conclude that R-loops are not a driver of recurrent double-strand break cluster formation in most long, neural genes. Together, our study provides an understanding of how R-loops may contribute to DNA break hotspots and affect lineage-specific processes in neural stem/progenitor cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []