Modified deformation behaviour of self-ion irradiated tungsten: A combined nano-indentation, HR-EBSD and crystal plasticity study

2020 
Abstract Predicting the dramatic changes in mechanical and physical properties caused by irradiation damage is key for the design of future nuclear fission and fusion reactors. Self-ion irradiation provides an attractive tool for mimicking the effects of neutron irradiation. However, the damaged layer of self-ion implanted samples is only a few microns thick, making it difficult to estimate macroscopic properties. Here we address this challenge using a combination of experimental and modelling techniques. We concentrate on self-ion-implanted tungsten, the front-runner for fusion reactor armour components and a prototypical bcc material. To capture dose-dependent evolution of properties, we experimentally characterise samples with damage levels from 0.01 to 1 dpa. Spherical nano-indentation of grains shows hardness increasing up to a dose of 0.032 dpa, beyond which it saturates. Atomic force microscopy (AFM) measurements show pile-up increasing up to the same dose, beyond which large pile-up and slip-steps are seen. Based on these observations we develop a simple crystal plasticity finite element (CPFE) model for the irradiated material. It captures irradiation-induced hardening followed by strain-softening through the interaction of irradiation-induced-defects and gliding dislocations. The shear resistance of irradiation-induced-defects is physically-based, estimated from transmission electron microscopy (TEM) observations of similarly irradiated samples. Nano-indentation of pristine tungsten and implanted tungsten of doses 0.01, 0.1, 0.32 and 1 dpa is simulated. Only two model parameters are fitted to the experimental results of the 0.01 dpa sample and are kept unchanged for all other doses. The peak indentation load, indent surface profiles and damage saturation predicted by the CPFE model closely match our experimental observations. Predicted lattice distortions and dislocation distributions around indents agree well with corresponding measurements from high-resolution electron backscatter diffraction (HR-EBSD). Finally, the CPFE model is used to predict the macroscopic stress-strain response of similarly irradiated bulk tungsten material. This macroscopic information is the key input required for design of fusion armour components.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    118
    References
    0
    Citations
    NaN
    KQI
    []