Crizotinib inhibits activation of MET pathway caused by MET extracellular SEMA domain duplication

2020 
Abstract Objective Aberrant MET activation, which promotes cell proliferation and tumor metastasis, occurs in many types of cancer and results from multiple mechanisms. A novel MET duplication mutation was found in a non-small cell lung cancer (NSCLC) patient. The clinical response to crizotinib was investigated and the functional relevance was characterized in cellular models. Materials and Methods Next-generation sequencing (NGS) was performed on the tumor tissue and circulating tumor DNA (ctDNA) of a patient with advanced NSCLC. In vitro studies including western blot, proliferation assays and colony formation assays were used to confirm the clinical observations. Results The patient was identified to harbor a duplication of the MET SEMA domain. After a month of treatment, the patient showed a marked response to crizotinib, a multikinase inhibitor with potent activity against MET. Functional in vitro studies demonstrated that expression of MET SEMA duplication in NIH-3T3 cells stimulated the activation of MET signaling. Crizotinib treatment obviously repressed cell proliferation, colony formation, and MET signaling pathway. Conclusion Crizotinib treatment resulted in a clinical response in a patient with MET SEMA duplication. Results of cellular analyses together with the clinical data suggest that this novel alteration may represent an actionable target in NSCLC patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []