Deamination, Oxidation, and C–C Bond Cleavage Reactivity of 5-Hydroxymethylcytosine, 5-Formylcytosine, and 5-Carboxycytosine
2013
Three new cytosine derived DNA modifications, 5-hydroxymethyl-2′-deoxycytidine (hmdC), 5-formyl-2′-deoxycytidine (fdC) and 5-carboxy-2′-deoxycytidine (cadC) were recently discovered in mammalian DNA, particularly in stem cell DNA. Their function is currently not clear, but it is assumed that in stem cells they might be intermediates of an active demethylation process. This process may involve base excision repair, C–C bond cleaving reactions or deamination of hmdC to 5-hydroxymethyl-2′-deoxyuridine (hmdU). Here we report chemical studies that enlighten the chemical reactivity of the new cytosine nucleobases. We investigated their sensitivity toward oxidation and deamination and we studied the C–C bond cleaving reactivity of hmdC, fdC, and cadC in the absence and presence of thiols as biologically relevant (organo)catalysts. We show that hmdC is in comparison to mdC rapidly oxidized to fdC already in the presence of air. In contrast, deamination reactions were found to occur only to a minor extent. The C–C...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
71
Citations
NaN
KQI