Evaluation of Reaction Mechanisms and Kinetic Parameters for the Transesterification of Castor Oil by Liquid Enzymes

2017 
The use of liquid enzymes for the production of biodiesel as an alternative to chemical catalysts requires significant investigation due to the lack of experimental data for the various feedstock and catalyst combinations. In this paper, reaction rates and kinetic modeling of the transesterification of castor oil with methanol using the enzyme Eversa Transform as the catalyst were investigated. Reactions were carried out for 8 h at 35 °C with an alcohol-to-oil molar ratio equal to 6:1, a 5 wt % of liquid enzyme solution, and addition of 5 wt % of water by weight of castor oil. From the concentration data, four different reaction mechanistic models were compared to determine the mechanism that best fitted the experimental data. Mechanisms where the methanolysis and hydrolysis reactions occurred simultaneously in the system were best at describing the concentration profiles. The high methanolysis rates of glycerides that were obtained indicated that transesterification dominates over hydrolysis. The mechani...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    19
    Citations
    NaN
    KQI
    []