Magnetic properties improvement of hot-deformed Nd–Fe–B permanent magnets by Pr-Cu eutectic pre-diffusion process

2019 
Abstract Pre-diffusion grain boundary strategy was proposed to fabricate die-upset Nd-Fe-B magnets with excellent magnetic properties. Microstructure modification of die-upset magnets played a key role in determining the magnetic properties. The effective coercivity enhancement of die-upset magnets through pre-diffusion process was enhanced from 0.076 T/wt%Pr to 0.114 T/wt%Pr with a slight remanence loss. Driven by heat, the Pr–Cu eutectic alloys were diffused into melt-spun ribbons with weakened exchange couple of matrix phase, which led to enhanced coercivity. The uniform distribution of intergranular phase was obtained in die-upset magnet with pre-diffusion process and the remanence reduction was limited with a high squareness factor. Microstructure analysis confirmed that the pre-diffusion process suppressed the longitudinal/lateral ratio of platelet-shaped grains and grain growth in die-upset process. Simultaneously, the pre-diffusion process facilitated the formation of continuous and uniform grain boundaries (GBs). The grain size was distributed over a narrow range of value with similar local critical nucleation field, which resulted in the improved squareness. The thick and continuous intergranular phase strengthened the magnetic isolation between neighboring Nd 2 Fe 14 B phases and offered more “pinning” sites for domain wall shift. The modified structure hindered the nucleation and spread of reverse domains in a low magnetic field in favor of the coercivity enhancement. The view-direct time-dependent behavior of reverse magnetic domains indicated that the coercivity mechanism for die-upset magnet was a combination of “pinning” effect and nucleation model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    15
    Citations
    NaN
    KQI
    []