Calcium channel blockers in vivo inhibit serotonin N‐acetyltransferase (NAT) activity in chicken retina stimulated by darkness and not by agents elevating intracellular cyclic AMP level

1992 
: The molecular mechanism underlying the role of calcium influx in the regulation of retinal serotonin N-acetyltransferase (NAT) activity was studied in vivo in chickens. Systemic administration of organic antagonists of voltage-sensitive calcium channels (VSCC), i.e., nimodipine and nifedipine, resulted in a marked suppression of the nocturnal increase of NAT activity in chicken retina. In contrast, NAT activity stimulated by nonhydrolysable analogs of cyclic AMP (dibutyryl-cyclic AMP and 8-bromo-cyclic AMP), forskolin, a direct activator of adenylate cyclase, and by phosphodiesterase inhibitors (aminophylline and 3-isobutyl-l-methylxanthine), was not significantly affected by various tested VSCC antagonists. The inhibitory effect of nimodipine on the dark-dependent increase in NAT activity of chicken retina was abolished by Bay K 8644, a selective VSCC agonist. The results presented in this paper indicate an important role of calcium influx through L-type of VSCC in the induction of NAT activity in chicken retina, and suggest that a requirement of calcium ions in the process of NAT induction in the retina may be primarily at the level of cyclic AMP production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    11
    Citations
    NaN
    KQI
    []