Variational Quantum Simulation for Periodic Materials

2020 
We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such as ground states and quasiparticle band structures. By extending the unitary coupled cluster (UCC) theory to describe crystals in arbitrary dimensions, we numerically demonstrate in hydrogen chain that the UCC ansatz implemented on a quantum circuit can be successfully optimized with a small deviation from the exact diagonalization over the entire range of the potential energy curves. Furthermore, with the aid of the quantum subspace expansion method, in which we truncate the Hilbert space within the linear response regime from the ground state, the quasiparticle band structure is computed as charged excited states. Our work establishes a powerful interface between the rapidly developing quantum technology and modern material science.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []