Normative theory of patch foraging decisions

2020 
Foraging is a fundamental behavior as animals9 search for food is crucial for their survival. Patch leaving is a canonical foraging behavior, but classic theoretical conceptions of patch leaving decisions lack some key naturalistic details. Optimal foraging theory provides general rules for when an animal should leave a patch, but does not provide mechanistic insights about how those rules change with the structure of the environment. Such a mechanistic framework would aid in designing quantitative experiments to unravel behavioral and neural underpinnings of foraging. To address these shortcomings, we develop a normative theory of patch foraging decisions. Using a Bayesian approach, we treat patch leaving behavior as a statistical inference problem. We derive the animals9 optimal decision strategies in both non-depleting and depleting environments. A majority of these cases can be analyzed explicitly using methods from stochastic processes. Our behavioral predictions are expressed in terms of the optimal patch residence time and the decision rule by which an animal departs a patch. We also extend our theory to a hierarchical model in which the forager learns the environmental food resource distribution. The quantitative framework we develop will therefore help experimenters move from analyzing trial based behavior to continuous behavior without the loss of quantitative rigor. Our theoretical framework both extends optimal foraging theory and motivates a variety of behavioral and neuroscientific experiments investigating patch foraging behavior
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    120
    References
    6
    Citations
    NaN
    KQI
    []