Investigation of Thermoelectric properties of Magnetic Insulator FeRuTiSi Using First Principle Calculation

2019 
In this work, we have investigated the electronic structure and thermoelectric properties of quaternary heusler alloy, FeRuTiSi, using first principle DFT tools implemented in WIEN2k and BoltzTraP code. Electronic structure calculations using TB-mBJ potential shows appearance of flat band at the conduction band edge, thus electron in conduction band have the large effective mass (me*), and therefore mainly contribute for negatively large value of Seebeck coefficient (S). This alloy has indirect band gap of 0.59 eV, and shows the n-type transport behavior. Under the constant relaxation time approximation (tau = 10 -14 s), temperature dependent Seebeck coefficient, electrical conductivity (sigma), and electronic thermal conductivity (ke) were also estimated. The maximum figure-of-merit (ZT), for the FeRuTiSi compound is found to be ~0.86 at 840 K, with n-type doping, which suggests that this quaternary alloy can be a good candidate among the n-type material for thermoelectric applications in high-temperature reg
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []