Optogenetic control of microglia membrane potential reveals signal transduction in chemotaxis

2020 
Microglia react to danger signals by rapid and targeted extension of cellular processes towards the source of the signal. This positive chemotactic response is accompanied by a hyperpolarization of the microglia membrane. Here we show that optogenetic depolarization of microglia has little effect on baseline motility, but significantly slows down the chemotactic response. Reducing the extracellular Ca2+ concentration mimics the effect of optogenetic depolarization. As the membrane potential sets the driving force for Ca2+ entry, hyperpolarization is an integral part of rapid stimulus-response coupling in microglia. Compared to other excitable cells, the sign of the activating response is inverted in microglia, leading to inhibition by depolarizing channelrhodopsins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []