language-icon Old Web
English
Sign In

Positive Systems of Kostant Roots

2016 
Let $\mathfrak{g}$ be a simple complex Lie algebra and let $\mathfrak{t} \subset \mathfrak{g}$ be a toral subalgebra of $\mathfrak{g}$. As a $\mathfrak{t}$-module $\mathfrak{g}$ decomposes as \[\mathfrak{g} = \mathfrak{s} \oplus \big(\oplus_{\nu \in \mathcal{R}} \mathfrak{g}^\nu\big)\] where $\mathfrak{s} \subset \mathfrak{g}$ is the reductive part of a parabolic subalgebra of $\mathfrak{g}$ and $\mathcal{R}$ is the Kostant root system associated to $\mathfrak{t}$. When $\mathfrak{t}$ is a Cartan subalgebra of $\mathfrak{g}$ the decomposition above is nothing but the root decomposition of $\mathfrak{g}$ with respect to $\mathfrak{t}$; in general the properties of $\mathcal{R}$ resemble the properties of usual root systems. In this note we study the following problem: "Given a subset $\mathcal{S} \subset \mathcal{R}$, is there a parabolic subalgebra $\mathfrak{p}$ of $\mathfrak{g}$ containing $\mathcal{M} = \oplus_{\nu \in \mathcal{S}} \mathfrak{g}^\nu$ and whose reductive part equals $\mathfrak{s}$?". Our main results is that, for a classical simple Lie algebra $\mathfrak{g}$ and a saturated $\mathcal{S} \subset \mathcal{R}$, the condition $(\operatorname{Sym}^\cdot(\mathcal{M}))^{\mathfrak{s}} = \mathbf{C}$ is necessary and sufficient for the existence of such a $\mathfrak{p}$. In contrast, we show that this statement is no longer true for the exceptional Lie algebras $\mathrm{F}_4, \mathrm{E}_6, \mathrm{E}_7$, and $\mathrm{E}_8$. Finally, we discuss the problem in the case when $\mathcal{S}$ is not saturated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []