The seismic wavefield as seen by Distributed Acoustic Sensing (DAS) arrays: local, regional and teleseismic sources

2021 
Distributed acoustic sensing (DAS) exploiting fibre optic cables provides a means for high-density sampling of the seismic wavefield. The scattered returns from multiple laser pulses provide local averages of strain rate over a finite gauge length, and the nature of the signal depends on the orientation of the cable with respect to the passing seismic waves. The properties of the wavefield in the slowness-frequency domain help to provide understanding of the nature of DAS recordings. For local events the dominant part of the strain rate can be extracted from the difference of ground velocity resolved along the fibre at the ends of the gauge interval, with an additional contribution just near the source. For more distant events the response at seismic frequencies can be represented as the acceleration along the fibre modulated by the horizontal slowness resolved in the same direction, which means there is a strong dependence on cable orientation. These representations of the wavefield provide insight into the character of the DAS wavefield in a range of situations from a local jump source, through a regional earthquake to teleseismic recording with different cable configurations and geographic locations. The slowness domain representation of the DAS signal allows analysis of the array response of cable configurations indicating the important role of the slowness weighting associated with the effect of gauge length. Unlike seismometer arrays the response is not described by a single generic stacking function. For high frequency waves, direct stacking enhances P, SV waves and Rayleigh waves; an azimuthal weighted stack provides retrieval of SH and Love waves at the cost of enhanced sidelobes in the array response.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []