Optimal bounds on the speed of subspace evolution.

2021 
By a quantum speed limit one usually understands an estimate on how fast a quantum system can evolve between two distinguishable states. The most known quantum speed limit is given in the form of the celebrated Mandelstam-Tamm inequality that bounds the speed of the evolution of a state in terms of its energy dispersion. In contrast to the basic Mandelstam-Tamm inequality, we are concerned not with a single state but with a (possibly infinite-dimensional) subspace which is subject to the Schroedinger evolution. By using the concept of maximal angle between subspaces we derive optimal bounds on the speed of such a subspace evolution. These bounds may be viewed as further generalizations of the Mandelstam-Tamm inequality. Our study includes the case of unbounded Hamiltonians.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []