Female House Mice do not Differ in Their Exploratory Behaviour from Males

2016 
Dispersal is an important ecological trait affecting genetic variation and dynamics of populations. Hence, the exploratory behaviour prior to actual dispersal may be crucial for potentially dispersing individuals. In mammals, females are traditionally seen as the more philopatric sex and dispersal as male-biased behaviour, and so behavioural strategies related to the exploration of novel resources should be differentially expressed in males and females. In addition, due to sexual selection exploratory strategies may be expected to vary according to females’ reproductive phase. We employed a standard open-field test as an approximation of the first phase of dispersal, using adult house mice representing two subspecies, M. m. musculus and M. m. domesticus. We tested the prediction that exploration of neutral area varies in females during different phases of the oestrus cycle and is different between both sexes and subspecies. We expected to find higher exploration in males, as the more dispersing sex and less pronounced subspecies-specific differences in females than in males. We found no significant effect of the oestrous phase on any of the parameters of the exploratory behaviour measured. Sexual dimorphism was found only in latency to enter the arena in M. m. domesticus where females hesitated longer to enter a new area than males. Significant subspecies-specific differences were found in three of four tested exploration parameters, so we conclude that females of both subspecies follow similar strategies to those displayed by males. Musculus mice show shorter latency to enter a new area, but once inside, domesticus mice explore the arena significantly longer, with less frequent retreats to a shelter. Our results thus highlight that the role of female dispersal in interdemic gene flow should not be neglected.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    7
    Citations
    NaN
    KQI
    []