Boundary-layer separation of rotating flows past surface-mounted obstacles

1992 
This paper describes laboratory experiments on the flow over a three-dimensional hill in a rotating fluid. The experiments were carried out in towing tanks, placed on rotating tables. Rotation is found to have a strong influence on the separation behind the hill. The topology of the separation is found to be the same for all the flows examined. The Rossby number R in the experiments is of order 1, the maximum value being 6. The separated flow is dominated by a single trailing vortex. In the majority of cases the surface stress field has a single separation line and there are no singular points. In a few experiments at the highest Rossby numbers the observations suggest more complex stress fields but the results are inconclusive.A criterion for flow separation is sought. For values of D/L > 1, where D is the depth of the flow and L the lengthscale of the hill, separation is found to be primarily dependent on R. At sufficiently small values of R separation is suppressed and the flow remains fully attached.Linear theory is found to give a good estimate for the critical value of R for flow separation. For hills with a moderate slope (slope ≤ 1) this critical value is around 1, decreasing with increasing slope. It is postulated that the existence of a single dominant trailing vortex is due to the uplifting and subsequent turning of transverse vorticity generated by surface pressure forces upstream of the separation line.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    9
    Citations
    NaN
    KQI
    []