Semiactive Neurocontrol for Seismic Response Reduction Using Smart Damping Strategy

2004 
A new semiactive control strategy that combines a neurocontrol system with a smart damper is proposed to reduce seismic responses of structures. In the proposed semiactive control system, the improved neurocontroller, which was developed by employing a training algorithm based on a cost function and a sensitivity evaluation algorithm to replace an emulator neural network, produces the desired active control force, and then a bang-bang-type controller clips the control forces that cannot be achieved by a smart damper (e.g., a variable orifice damper, controllable fluid damper, etc.). Therefore, the proposed semiactive control strategy is fail-safe in that the bounded-input, bounded-output stability of the controlled structure is guaranteed. Numerical simulation results show that the proposed semiactive control system that employs a neural network-based control algorithm is quite effective in reducing seismic responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    20
    Citations
    NaN
    KQI
    []