Porphyrin Donor and Tunable Push-Pull Acceptor Conjugates-Experimental Investigation of Marcus Theory

2017 
We report on a series of electron donor-acceptor conjugates incorporating a ZnII porphyrin-based electron donor and a variety of non-conjugated rigid linkers connecting to push-pull chromophores as electron acceptors. The electron acceptors comprize multicyanobutadienes or extended tetracyanoquinodimethane analogues with first reduction potentials ranging from -1.67 to -0.23 V vs. Fc+/Fc in CH2Cl2, which are accessible through a final-step cycloaddition-retroelectrocyclization (CA-RE) reaction. Characterization of the conjugates includes electrochemistry, spectroelectrochemistry, DFT calculations, and photophysical measurements in a range of solvents. The collected data allows for the construction of multiple Marcus curves that consider electron acceptor strength, linker length and solvent, with data points extending well into the inverted region. The enhancement of electronic-vibration couplings, resulting from the rigid spacers and, in particular, multicyano-groups in the conformationally highly fixed push-pull acceptor chromophores affects the charge-recombination kinetics in the inverted region drastically.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    15
    Citations
    NaN
    KQI
    []