Iron chelators increase the resistance of Ataxia telangeictasia cells to oxidative stress

2004 
Ataxia telangeictasia (A-T) is an autosomal recessive disorder characterized by immune dysfunction, genomic instability, chronic oxidative damage, and increased cancer incidence. Previously, desferal was found to increase the resistance of A-T, but not normal cells to exogenous oxidative stress in the colony forming-efficiency assay, suggesting that iron metabolism is dysregulated in A-T. Since desferal both chelates iron and modulates gene expression, we tested the effects of apoferritin and the iron chelating flavonoid quercetin on A-T cell colony-forming ability. We demonstrate that apoferritin and quercetin increase the ability of A-T cells to form colonies. We also show that labile iron levels are significantly elevated in Atm-deficient mouse sera compared to syngeniec wild type mice. Our findings support a role for labile iron acting as a Fenton catalyst in A-T, contributing to the chronic oxidative stress seen in this disease. Our findings further suggest that iron chelators might promote the survival of A-T cells and hence, individuals with A-T.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    32
    Citations
    NaN
    KQI
    []