Acoustic Energy: An Innovative Technology for Stimulating Oil Wells

2006 
The objective of this investigation was to demonstrate the effectiveness of sonication in reducing the viscosity of heavy crude oils. Sonication is the use of acoustic or sound energy to produce physical and/or chemical changes in materials, usually fluids. The goal of the first project phase was to demonstrate a proof of concept for the project objective. Batch tests of three commercially available, single-weight oils (30-, 90-, and 120-wt) were performed in the laboratory. Several observations and conclusions were made from this series of experiments. These include the following: (1) In general, the lower the acoustic frequency, the greater the efficiency in reducing the viscosity of the oils; (2) Sonication treatment of the three oils resulted in reductions in viscosity that ranged from a low of 31% to a high of 75%; and (3) The results of the first phase of the project successfully demonstrated that sonication could reduce the viscosity of oils of differing viscosity. The goal of the second project phase was to demonstrate the ability of sonication to reduce the viscosity of three crude oils ranging from a light crude to a heavy crude. The experiments also were designed to examine the benefits of two proprietary chemicalmore » additives used in conjunction with sonication. Acoustic frequencies ranging from 800 Hz to 1.6 kHz were used in these tests, and a reactor chamber was designed for flow-through operation with a capacity of one gallon (3.8 liters). The three crude oils selected for use in the testing program were: (1) a heavy crude from California with a viscosity of approximately 65,000 cP (API gravity about 12{sup o}), (2) a crude from Alabama with a significant water content and a viscosity of approximately 6,000 cP (API gravity about 22 {sup o}), and (3) a light crude from the Middle East with a viscosity of approximately 700 cP (API gravity about 32{sup o}). The principal conclusions derived from the second project phase include the following: (1) The application of acoustic energy (sonication) significantly reduced the viscosity of crude oils, and the amount of viscosity reduction resulting is greater for more viscous, heavy crude oils than it is for less viscous, light crude oils. (2) Test results showed that after being heated, resulting viscosity reductions were not sustained following treatment to the extent that post-sonication reductions were sustained. (3) The maximum viscosity reductions in Oils 1, 2, and 3 due to sonication were 43%, 76%, and 6%, respectively. Samples of Oil 2 associated with larger viscosity reductions often exhibited a definite water separation layer follow the tests, whereas reductions of approximately 23% were measured when this separation was not observed. (4) It was observed that neither horn design nor the reduction of input power by 25% had very little effect on the ability of sonication to alter crude oil viscosity. (5) The chemical additives produced a range of viscosity reduction from 37% to a maximum of 94% with the largest reductions being facilitated by the abundant water present Oil 2. If the Oil 2 results are not considered, the maximum reduction was 73%. The effects of the additives and sonication are enhanced by each other. (6) In only one test did the viscosity return to as much as 50% of the pre-treatment value during a period of 30 days following treatment; recovery was much less in all other cases. Therefore, more than half of the viscosity reduction was maintained for a month without additional treatment. (7) Possible applications, market potential, and economic value of the implementation of a mature sonication technology within the petroleum industry were identified, and it was estimated that the potential exists that more than a billion barrels of oil could be upgraded or produced annually as a result. The project results successfully demonstrated that sonication alone and in combination with chemical additives can effectively reduce the viscosity of crude oils having a broad range of viscosity/API gravity values. Several recommendations are made for follow-on work that is required before the technology can be considered mature and ready for commercial implementation.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []