An unusual electrochemical oxidation of phenothiazine dye to phenothiazine-bi-1,4-quinone derivative (a donor-acceptor type molecular hybrid) on MWCNT surface and its cysteine electrocatalytic oxidation function
2016
Abstract Phenothiazine (PTZ), a thiazine class heterocyclic compound, is a well-known electron donating system and has been widely used as a starting compound to prepare various phenothiazine dyes and pharmaceutically important compounds. Quinones and its derivatives are constituents of biologically active molecules serve as excellent electron-acceptor systems. Oxidation of PTZ by chemical and electrochemical methods often resulted into monohydroxylation of benzene ring moiety, S-oxidized and polymerized compounds as end products. Electrochemical oxidation of PTZ on a multiwalled carbon nanotube (MWCNT) modified glassy carbon electrode in pH 7 phosphate buffers solution (PBS) has been investigated in this work. A highly redox active surface confined PTZ-bi-1,4-quinone derivative (PTZ-biQ) on MWCNT modified glassy carbon electrode, designated as GCE/MWCNT@PTZ-biQ, as a product was unusually observed. The GCE/MWCNT@PTZ-biQ showed well-defined redox peaks at E 1/2 = −0.07 and +0.29 V vs Ag/AgCl corresponding to surface confined electron-transfer behavior of the bi-quinone (acceptor) and PTZ-cationic radical species (donor) respectively. No such electrochemical characteristics were noticed when unmodified GCE was subjected to the electrochemical oxidation of PTZ. Existence of PTZ-biQ was confirmed by XRD, Raman spectroscopy, FT-IR and GC-MS (methanolic extract of the active layer) analyses. Position of biQ in PTZ-biQ as 1,4-quinone isomer was confirmed by observation of absence of copper-complexation with 1,4-quinone and H 2 O 2 electrochemical reduction reactions at −0.1 V vs Ag/AgCl unlike to the specific copper-complexation and H 2 O 2 reduction with 1,2-quinone isomer in pH 7. Cysteine (CySH) oxidation was studied as a model system to understand the electron-transfer function of the MWCNT@PTZ-biQ. A highly selective electrocatalytic oxidation and sensing by amperometric i-t and flow injection analysis of CySH at low oxidation potential, 0.3 V vs Ag/AgCl in pH 7 PBS with detection limit values (signal-to-noise ratio = 3) of 11.10 μM and 110 nM respectively, without any interference from other biochemicals like uric acid, dopamine, nitrite, citric acid and H 2 O 2 , unlike the conventional chemically modified electrodes with serious interference's, have been demonstrated.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
61
References
11
Citations
NaN
KQI