Lysineurethanedimethacrylate—a novel generation of amino acid based monomers for bone cements and tissue repair

2002 
Abstract A novel amino acid based dimethacrylate monomer (lysineurethanedimethacrylate, LUDM) was prepared by the addition of hydroxyethylmethacrylate (HEMA) to lysinediisocyanate (LDI). The structure was confirmed by FT-IR and 1 H and 13 C NMR spectroscopy as well as FAB-MS. Photopolymerized LUDM exhibited low volume shrinkage upon polymerization, good mechanical properties (Young's modulus: 3740 MPa) and high thermal stability. Osteoblast adhesion and growth on polymerized LUDM samples evidenced the biocompatibility. Further improvement of the mechanical properties was obtained by using Ca-hydroxyapatite as inorganic filler varying between 10 and 30 wt%. The Young's and flexural moduli increased with increasing filler content ranging from 3740 to 5250 MPa and from 2020 to 3690 MPa, respectively. The mechanical properties and the good biocompatibility of the lysine-based methacrylate networks make them interesting materials for medical applications, e.g. bone cements, and tissue engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    12
    Citations
    NaN
    KQI
    []