Impact of Mg-Doping Site Control in the Performance of Li4Ti5O12 Li-Ion Battery Anode: First-Principles Predictions and Experimental Verifications

2017 
Li4Ti5O12 (LTO) has attracted tremendous attention as a stationary Li-ion battery anode material due to its excellent stability. However, the poor rate capability caused by the low electrical conductivity limits its practical use. Previously, Mg-doping in LTO has been used to improve the electrical conductivity and electrochemical properties, but the Mg-doped LTO system generally exhibits large anomalies in the electrical properties and capacities, which limits the reliable mass-production of engineered LTO. In this study, on the basis of first-principles calculations and related experiments, we systematically study the effects of charge-compensating point defects of the Mg-doped LTO on the electrical properties. A combination of first-principles calculations with thermodynamic modeling shows that high-temperature annealing under reducing conditions could effectively alter the Mg-doping site from a Ti4+ to Li+ site and increase the electrical conductivity significantly due to reduced electron effective ma...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    12
    Citations
    NaN
    KQI
    []