Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma
2020
Abstract Background Posthepatectomy liver failure is a worrisome complication after major hepatectomy for hepatocellular carcinoma and is the leading cause of postoperative mortality. Recommendations for hepatectomy for hepatocellular carcinoma are based on the risk of severe posthepatectomy liver failure, and accurately predicting posthepatectomy liver failure risk before undertaking major hepatectomy is of great significance. Thus, herein, we aimed to establish and validate an artificial neural network model to predict severe posthepatectomy liver failure in patients with hepatocellular carcinoma who underwent hemihepatectomy. Methods Three hundred and fifty-three patients who underwent hemihepatectomy for hepatocellular carcinoma were included. We randomly divided the patients into a development set (n = 265, 75%) and a validation set (n = 88, 25%). Multivariate logistic analysis facilitated identification of independent variables that we incorporated into the artificial neural network model to predict severe posthepatectomy liver failure in the development set and then verified in the validation set. Results The morbidity of patients with severe posthepatectomy liver failure in the development and validation sets was 24.9% and 23.9%, respectively. Multivariate analysis revealed that platelet count, prothrombin time, total bilirubin, aspartate aminotransferase, and standardized future liver remnant were all significant predictors of severe posthepatectomy liver failure. Incorporating these factors, the artificial neural network model showed satisfactory area under the receiver operating characteristic curve for the development set of 0.880 (95% confidence interval, 0.836–0.925) and for the validation set of 0.876 (95% confidence interval, 0.801–0.950) in predicting severe posthepatectomy liver failure and achieved well-fitted calibration ability. The predictive performance of the artificial neural network model for severe posthepatectomy liver failure outperformed the traditional logistic regression model and commonly used scoring systems. Moreover, stratification into 3 risk groups highlighted significant differences between the incidences and grades of posthepatectomy liver failure. Conclusion The artificial neural network model accurately predicted the risk of severe posthepatectomy liver failure in patients with hepatocellular carcinoma who underwent hemihepatectomy. Our artificial neural network model might help surgeons identify intermediate and high-risk patients to facilitate earlier interventions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
44
References
8
Citations
NaN
KQI