A novel transgenic murine model with persistently brittle bones simulating osteogenesis imperfecta type I

2019 
Abstract Osteogenesis imperfecta (OI) type I caused by the null allele of COL1A1 gene is in the majority in clinical OI cases. Currently, heterozygous Mov-13 mice generated by virus insertion in the first intron of col1a1 is the exclusive model to modulate OI type I, in spite of the gradually recovered bone mineral and mechanical properties. A newly designed heterozygous col1a1±365 OI mouse was produced in the present study by partial exons knockout (exon 2-exon 5, 365 nt of mRNA) using CRISPR/Cas9 system. The deletion resulted in generally large decrease in type I collagen synthesis due to frameshift mutation and premature chain termination, closely mimicking the pathogenic mechanism in affected individuals. And the strain possessed significantly sparse mineral scaffolds, bone loss, lowered mechanical strength and broken bone metabolism by 8 and 20 weeks compared to their littermates, suggesting a sustained skeletal weakness. Notably, the remarkable down-regulation of Yes-associated protein (YAP), one of the key coactivator in Hippo signaling pathway, was first found both in the femur and adipose derived mesenchymal stem cells (ADSCs) under osteogenic differentiation of col1a1±365 mice, which might be responsible for the reduced osteogenic potential and brittle bones. Still, further research was needed in order to illuminate the underlying mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    5
    Citations
    NaN
    KQI
    []