The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms

2013 
The influence of a novel, safe antibiofilm therapy on the mechanical properties of Pseudomonas aeruginosa and Acinetobacter baumannii biofilms in vitro was characterized. A multiscale approach employing atomic force microscopy (AFM) and rheometry was used to quantify the mechanical disruption of the biofilms by a therapeutic polymer based on a low-molecular weight alginate oligosaccharide (OligoG). AFM demonstrated structural alterations in the biofilms exposed to OligoG, with significantly lower Young’s moduli than the untreated biofilms, (149 MPa vs 242 MPa; p < 0.05), a decreased resistance to hydrodynamic shear and an increased surface irregularity (Ra) in the untreated controls (35.2 nm ± 7.6 vs 12.1 nm ± 5.4; p < 0.05). Rheology demonstrated that increasing clinically relevant concentrations of OligoG (<10%) were associated with an increasing phase angle (δ) over a wide range of frequencies (0.1–10 Hz). These results highlight the utility of these techniques for the study of three-dimensional biofil...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    60
    Citations
    NaN
    KQI
    []