Photoluminescence characterization technique for resonant-tunneling structures based on a long-period GaAs/AlGaAs superlattice, applicable at different stages of fabrication

2007 
A technique is developed for the photoluminescence-spectroscopy characterization of resonant-tunneling structures based on a long-period GaAs/AlGaAs superlattice that can be used for quality evaluation at all the stages of fabrication, including molecular-beam epitaxy, photolithography, and annealing. Factors such as the small energy difference between the quantum confined states in wide quantum wells, which make the photoluminescence characterization of such structures more difficult are taken into account. The long-period multiquantum-well structures are promising for the development of a new kind of solid-state intersub-band-transition devices emitting the narrow band radiation in far infrared. Their potential is essentially based on the fact that the scattering and the decay of carriers in the lower quantum-confined states may or may not involve optical phonons. The technique works at both liquid-helium and room temperature. It helps one optimize the process conditions to fabricate high-quality wide-quantum-well structures with excellent uniformity and desired parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []