Numerical study on the dynamics of a two-raft wave energy conversion device

2015 
Abstract This paper presents a dynamic analysis of a two-raft wave energy conversion device based on the three-dimensional wave radiation-diffraction method. The device consists of two hinged cylindrical rafts of elliptical cross section and a power take-off system at the joint. The effect of raft length, linear damping and spring coefficient in the power take off (PTO) system, axis ratio (ratio of minor axis to major axis of raft elliptical cross section) and raft radius of gyration on wave energy capture factor has been investigated in frequency domain, while the effects of a nonlinear Coulomb power take-off, raft radius of gyration and latching control have been studied in time domain. The difference in the performance of a raft-typed device obtained using a linear damping and a Coulomb damping is also illustrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    51
    Citations
    NaN
    KQI
    []