Preparation and Preliminary Nonlinear Optical Properties of BiFeO3 Nanocrystal Suspensions from a Simple, Chelating Agent-Free Precipitation Route

2018 
Preparation of stable BiFeO3 nanocrystal suspensions through a simple, low-cost precipitation technique is described. Amorphous precursors are first precipitated from metal nitrate salts in highly basic KOH solutions, and a short high-temperature annealing step is then performed to induce crystallization. Nanoparticles are characterized by X-ray diffraction (XRD), TEM, DLS and ζ-potential measurements, and the synthesis conditions optimized after a systematic variation of the KOH concentration within the range of 1–12 M. The presence of residual impurities (mainly Bi25FeO39 and Bi2Fe4O9) quantified from XRD and mean nanocrystal size is found to be strongly influenced by the initial KOH solution content. A concentration at about 3–4 M is optimal in terms of BiFeO3 phase-purity and nanocrystal size. Stability of aqueous dispersions of the amorphous precursors and of the purest crystallized nanoparticles is also characterized between pH = 2 and pH = 13. After preparation of stable, almost phase-pure BiFeO3 nanocrystal suspensions, second and third harmonic scattering (SHS and THS) at excitation wavelengths of 1064 nm and 1250 nm are reported from nonlinear optical scattering measurements and compared with other recently published literature values.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []