Self-Healing Nucleation Seeds Induced Long-Term Dendrite-Free Lithium Metal Anode.
2021
Seeded lithium (Li) nucleation has been considered as a promising strategy to achieve uniform Li deposition. However, problems of agglomeration and pulverization quickly invalidate the nucleation seeds, resulting in Li dendrite growth during repeated charge/discharge processes. Herein, liquid gallium-indium (GaIn) nanoparticles with structural self-healing properties are utilized to guide uniform metallic Li nucleation and deposition. Ultrafine GaIn nanoparticles (∼25 nm) uniformly decorated on the surface of carbon layers effectively homogenize the lithium-ion flux. After fully Li stripping, lithiophilic GaIn nanoparticles return to the liquid binary eutectic phase, thereby healing the deformed structure and enabling them to continuously guide dendrite-free Li deposition. Li metal anodes with such nucleation seeds exhibit nearly zero nucleation overpotential even after hundreds of cycles and a high average Coulombic efficiency of 99.03% for more than 400 cycles. The design of self-healing nucleation seeds provides important insights for obtaining high-performance lithium metal anodes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
45
References
0
Citations
NaN
KQI