EuLerian Identification of ascending Air Streams (ELIAS 2.0) in Numerical Weather Prediction and Climate Models. Part I: Development of deep learning model

2021 
Abstract. Physical processes on the synoptic scale are important modulators of the large-scale extratropical circulation. In particular, rapidly ascending air streams in extratropical cyclones, so-called warm conveyor belts (WCBs), modulate the upper-tropospheric Rossby wave pattern and are sources and magnifiers of forecast uncertainty. Thus, from a process-oriented perspective, numerical weather prediction (NWP) and climate models should adequately represent WCBs. The identification of WCBs usually involves Lagrangian air parcel trajectories that ascend from the lower to the upper troposphere within two days. This requires numerical data with high spatial and temporal resolution which is often not available from standard output and requires expensive computations. This study introduces a novel framework that aims to predict the footprints of the WCB inflow, ascent, and outflow stages over the Northern Hemisphere from instantaneous gridded fields using convolutional neural networks (CNNs). With its comparably low computational costs and relying on standard model output alone the new diagnostic enables the systematic investigation of WCBs in large data sets such as ensemble reforecast or climate model projections which are mostly not suited for trajectory calculations. Building on the insights from a logistic regression approach of a previous study, the CNNs are trained using a combination of meteorological parameters as predictors and trajectory-based WCB footprints as predictands. Validation of the networks against the trajectory-based data set confirms that the CNN models reliably replicate the climatological frequency of WCBs as well as their footprints at instantaneous time steps. The CNN models significantly outperform previously developed logistic regression models. Including time-lagged information on the occurrence of WCB ascent as a predictor for the inflow and outflow stages further improves the models' skill considerably. A companion study demonstrates versatile applications of the CNNs in different data sets including the verification of WCBs in ensemble forecasts. Overall, the diagnostic demonstrates how deep learning methods may be used to investigate the representation of weather systems and of their related processes in NWP and climate models in order to shed light on forecast uncertainty and systematic biases from a process-oriented perspective.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []