Time-resolved measurement of film growth during reactive high power pulsed magnetron sputtering (HIPIMS) of titanium nitride

2013 
The growth rate during reactive high power pulsed magnetron sputtering (HIPIMS) of titanium nitride is an inherent time-dependent process. By using a rotating shutter setup it is possible to gain an insight into its variation with a temporal resolution of up to 25 µs. In this apparatus a 200 µm slit is rotated in front of the substrate synchronous with the HIPIMS pulses. This ensures that the incoming growth flux is laterally distributed over the substrate. By measuring the resulting deposition profile with profilometry and x-ray photoelectron spectroscopy, the temporal variation of the titanium and nitrogen growth flux per pulse is deduced. The analysis reveals that film growth occurs mainly during an HIPIMS pulse, with the growth rate following the HIPIMS phases ignition, current rise, gas rarefaction, plateau and afterglow. The growth fluxes of titanium and nitrogen follow slightly different behaviours with titanium dominating at the beginning of the HIPIMS pulse and nitrogen at the end of the pulse. This is explained by the gas rarefaction effect resulting in a dense initial metal plasma and metal films which are subsequently nitrified.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    4
    Citations
    NaN
    KQI
    []