Ring-strain-enabled reaction discovery: new heterocycles from bicyclo[1.1.0]butanes.

2015 
ConspectusMechanistically as well as synthetically, bicyclo[1.1.0]butanes represent one of the most fascinating classes of organic compounds. They offer a unique blend of compact size (four carbon atoms), high reactivity (strain energy of 66 kcal/mol), and mechanistic pathway diversity that can be harvested for the rapid assembly of complex scaffolds. The C(1)–C(3) bond combines the electronic features of both σ and π bonds with facile homolytic and heterolytic bond dissociation properties and thereby readily engages pericyclic, transition-metal-mediated, nucleophilic, and electrophilic pathways as well as radical acceptor and donor substrates.Despite this multifaceted reaction profile and recent advances in the preparation of bicylo[1.1.0]butanes, the current portfolio of synthetic applications is still limited compared with those of cyclopropanes and cyclobutanes. In this Account, we describe our work over the past decade on the exploration of substituent effects on the ring strain and the reactivity of...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    45
    Citations
    NaN
    KQI
    []