Galvanic Corrosion of a Zn/steel Couple in Aqueous NaCl

2011 
Galvanic corrosion of a model Zn/steel couple was investigated in aqueous NaCl solutions by measuring open circuit potentials (OCPs), potential and current distributions, and galvanic currents. The OCP transient of the Zn/steel couple was divided into two stages. The first stage consisted of sacrificial dissolution of zinc. At low concentrations of NaCl (0.01 mol/dm3), the cathodic reaction on the couple surface was an oxygen reduction reaction (ORR). With increasing concentrations of NaCl, the cathodic reaction at the steel surface changed from an ORR to the combination of an ORR and hydrogen evolution reaction (HER). In addition, the precipitation morphology of zinc corrosion products differed as a function of NaCl concentration, suggesting that the pH distribution on the couple surface depended on the relationship between the cathodic reactions and the hydrolysis of Zn2+. Furthermore, the findings demonstrated that both the ORR and HER were inhibited at the steel underlying precipitated zinc corrosion products. The second stage consisted of steel corrosion. The location of the onset of steel corrosion was related to the pH distribution just prior to the extinction of the galvanic action of zinc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    6
    Citations
    NaN
    KQI
    []