Fully-Automated Diagnosis of Aortic Stenosis Using Phonocardiogram-Based Features *

2019 
The irreversible damage and eventual heart failure caused by untreated aortic stenosis (AS) can be prevented by early detection and timely intervention. Prior work in the field of phonocardiogram (PCG) signal analysis has provided proof of concept for using heart-sound data in AS diagnosis. However, such systems either require operation by trained technicians, fail to address a diverse subject set, or involve unwieldy configuration procedures that challenge real-world application. This paper presents an end-to-end, fully-automated system that uses noise-subtraction, heartbeat-segmentation and quality-assurance algorithms to extract physiologically-motivated features from PCG signals to diagnose AS. When tested on n=96 patients showing a diverse set of cardiac and non-cardiac conditions, the system was able to diagnose AS with 92% sensitivity and 95% specificity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []