Predictors of psychiatric disorders in liver transplantation candidates: Logistic regression models

2003 
This study has two goals. The first goal is to assess the prevalence of psychiatric disorders in orthotopic liver transplantation (OLT) candidates by means of standardized procedures because there has been little research concerning psychiatric problems of potential OLT candidates using standardized instruments. The second goal focuses on identifying predictors of these psychiatric disorders. One hundred sixty-five elective OLT candidates were assessed by our unit. Psychiatric diagnoses were based on the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Patients also were assessed using the Hamilton Depression Rating Scale (HDRS) and the Spielberger Anxiety Index, State and Trait forms (STAI-X1 and STAI-X2). Severity of cirrhosis was assessed by applying Child-Pugh score criteria. Chi-squared and general linear model analysis of variance were used to test the univariate association between patient characteristics and both clinical psychiatric diagnoses and severity of psychiatric diseases. Variables with P less than .10 in univariate analyses were included in multiple regression models. Forty-three percent of patients presented at least one psychiatric diagnosis. Child-Pugh score and previous psychiatric diagnoses were independent significant predictors of depressive disorders. Severity of psychiatric symptoms measured by psychometric scales (HDRS, STAI-X1, and STAI-X2) was associated with Child-Pugh score in the multiple regression model. Our data suggest a high rate of psychiatric disorders, particularly adjustment disorders, in our sample of OLT candidates. Severity of liver disease emerges as the most important variable in predicting severity of psychiatric disorders in these patients. (Liver Transpl 2003;9:721-726.)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    40
    Citations
    NaN
    KQI
    []