A low-power, radiation-resistant ASIC for SDD-based x-ray spectrometers

2012 
We present an Application Specific Integrated Circuit (ASIC) for high resolution X-ray spectrometers (XRS) in radiation harsh environment (such as Jovian system). The ASIC was designed to read out signals from low resistivity pixelated Silicon-Drift-Detectors (SDD) to ensure radiation hardness. The readout is done by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW and provides 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, pile-up rejection, and peak detection with analog memory. The readout is sparse and based on a custom low-power tri-stable low-voltage differential signaling digital interface. A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm 2 , and dissipates less than 20 mW/cm 2 . The ASICs were powered on and irradiated using a beam line with 203 MeV protons, to total doses ranging from 0.25 Mrad to 12 Mrad. Performance degradation due to radiation-induced leakage current was observed to peak around 2 Mrad dose. Critical contributors to the degradation were identified through simulation and measurements, and corresponding circuitry was thus modified to address the issues. Measurements on the radiation-resistant design have shown excellent radiation resistance at total doses ranging from 1 to 8 Mrad.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []