New flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline

2019 
Transmission electron microscopy (TEM) is an important imaging technique in bacterial research and requires ultrathin sectioning of resin embedding of cell pellets. This method consumes milli- to deciliters of culture and results in sections of randomly orientated cells. For rod-shaped bacteria, this makes it exceedingly difficult to find longitudinally cut cells, which precludes large-scale quantification of morphological phenotypes. Here, we describe a new fixation method using either thin agarose layers or carbon-coated glass surfaces that enables flat embedding of bacteria. This technique allows for the observation of thousands of longitudinally cut rod-shaped cells per single section and requires only microliter culture volumes. We successfully applied this technique to Gram-positive Bacillus subtilis, Gram-negative Escherichia coli, the tuberculosis vaccine strain Mycobacterium bovis BCG, and the cell wall-lacking mycoplasma Acholeplasma laidlawii. To assess the potential of the technique to quantify morphological phenotypes, we examined cellular changes induced by a panel of different antibiotics. Surprisingly, we found that the ribosome inhibitor tetracycline causes significant deformations of the cell membrane. Further investigations showed that the presence of tetracycline in the cell membrane changes membrane organization and affects the peripheral membrane proteins MinD, MinC, and MreB, which are important for regulation of cell division and elongation. Importantly, we could show that this effect is not the result of ribosome inhibition but is a secondary antibacterial activity of tetracycline that has defied discovery for more than 50 years.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    4
    Citations
    NaN
    KQI
    []