Influence of B 4 C on microstructural, mechanical and wear properties of Mg-based composite by two-step stir casting

2021 
This paper has been focused on the porosity, hardness, tensile and abrasion wear of Mg-based B 4 C composites developed by squeezed vacuum-based stir casting (SVSC) process by adding 3, 5, 7, 9 wt. % of B 4 C. Also, an electromagnetic stir casting has been used to synthesize similar composition specimens in comparison to the SVSC results. Additionally, electron microscopy has been used for analyzing the micro structural, fractographic and worn images of Mg-based B 4 C composites and to validate appropriate fabrication method. A tribo-test has been carried out by two-body abrasion condition at 20N and 30N load for as sliding distance of 100m and 5m/s of speed. The results reveal that the SVSC process produces homogeneously distributed B 4 C particles in Mg-matrix as compared to the electromagnetic stirring. The mechanical properties of Mg/B 4 C composites show their significant enhancement with the addition of B 4 C content in Mg-matrix. B 4 C composites show an increment of 33-48% of hardness as compared to Mg-matrix. Mg-matrix having 9 wt. % of B 4 C composite reveals the least tensile strength and fractured images show the cleavage planes, micro voids as well as micro cracks. Although, worn images shows oxidation and ploughing mechanism with the increase in load and depth of penetration in Mg-matrix B 4 C composites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []