A key role for ATF3 in regulating mast cell survival and mediator release

2010 
Activating transcription factor 3 (ATF3) is a basic leucine zipper transcription factor that plays a regulatory role in inflammation, cell division, and apoptosis. Mast cells (MCs) initiate many inflammatory responses and have a central role in allergy and allergic diseases. We report here that ATF3 has a central role in MC development and function. Bone marrow–derived MC populations from ATF3-deficient mice are unresponsive to interleukin-3 (IL-3)–induced maturation signals, and this correlates with increased apoptosis, diminished activation of the Akt kinase, and decreased phosphorylation of the proapoptotic protein Bad. Furthermore, ATF3-null mice lacked MCs in the peritoneum and dermis, showing that the in vitro results are recapitulated in vivo. ATF3-null MCs also showed functional defects; high-affinity immunoglobulin E receptor–mediated degranulation was significantly inhibited, whereas IL-4 and IL-6 expression was enhanced. This dual role of ATF3 provides insight into the complex interplay between MC development and its subsequent physiologic role.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    23
    Citations
    NaN
    KQI
    []