Sustainable Oxidation Catalysis Supported by Light: Fe-Poly (heptazine imide) as a Heterogeneous Single-Atom Photocatalyst

2021 
Abstract Fe-N-C materials, when prepared as single-atom catalysts (SAC), display excellent activities in oxidation reactions. The systematic investigation of the iron coordination mode revealed that Fe-N4C catalysts are the most active for C-H bond oxidation. However, many of these catalysts are synthesized through pyrolysis, which is characterized by a lack of control and structures with heterogeneous composition, rarely presenting only atomically dispersed Fe−N−C as active sites. Herein, an alternative, reliable and easily reproducible method to obtain highly active Fe SACs (atomically dispersed) with Fe-N4 sites is presented, which is based on ion exchange of sodium from high crystalline sodium poly(heptazine imide) (Na-PHI) by other ions. The obtained catalyst can photocatalytically oxidize C-H bonds selectively toward ketones using only dioxygen. Detailed mechanism investigations indicate that the active species in the C-H bond oxidation are highly valent Fe(IV)/Fe(V)-oxo species, which are further activated by the holes generated at the PHI support under light irradiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []