Spatial representation of in-stream sediment phosphorus release combining channel network approaches and in-situ experiments.

2021 
Abstract Impairment of rivers by elevated phosphorus (P) concentration is an issue often studied at outlets of mesoscale catchments. Our objective was to evaluate within-catchment spatio-temporal processes along connected reaches to understand processes of internal P loading associated with sediment input, accumulations in channels and sediment-water column P exchange. Our overall hypothesis was that heterogeneous sediment residence within the channel of a 52 km2 mixed land cover catchment resulted in key zones for sediment-water P exchange. We evaluated the channel network through ground-survey, spatial data methods establishing connectivity and energy gradients. This gave a background to understand sampling of sediments and P release/uptake to the water column using 90 s in-situ resuspension isolating a portion of streambed over five sets of three-location transects in May (spring storms, recent active erosion) and September (summer low flow, longer sediment residence). Simple transect position models (top, mid, bottom) predicted increased sediment resuspension yields and P contents in lower settings. Sediment P release following resuspension were mean (and range) 0.5 (−0.8 to 1.8) and 0.5 (−2.5 to 3.6) mg soluble reactive P/m2 bed in May and September, respectively, strengthening generally down the transects but inconsistently. Relationships (log form) showed a steepening rise in fine sediments, P content, background and disturbance-released dissolved P, with specific stream power
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []