Alterations of Tension-dependent ATP Utilization in a Transgenic Rat Model of Hypertrophic Cardiomyopathy

2006 
Abstract Although it is established that familial hypertrophic cardiomyopathy (FHC) is caused by mutations in several sarcomeric proteins, including cardiac troponin T (TnT), its pathogenesis is still not completely understood. Previously, we established a transgenic rat model of FHC expressing a human TnT molecule with a truncation mutation (DEL-TnT). This study investigated whether contractile dysfunction and electrical vulnerability observed in DEL-TnT rats might be due to alterations of intracellular Ca2+ homeostasis, myofibrillar Ca2+ sensitivity, and/or myofibrillar ATP utilization. Simultaneous measurements of the force of contraction and intracellular Ca2+ transients were performed in right ventricular trabeculae of DEL-TnT hearts at 0.25 and 1.0 Hz. Rats expressing wild-type human TnT as well as nontransgenic rats served as controls. In addition, calcium-dependent ATPase activity and tension development were investigated in skinned cardiac muscle fibers. Force of contraction was significantly decreased in DEL-TnT compared with nontransgenic rats and TnT. Time parameters of Ca2+ transients were unchanged at 0.25 Hz but prolonged at 1.0 Hz in DEL-TnT. The amplitude of the fura-2 transient was similar in all groups investigated, whereas diastolic and systolic fura-2 ratios were found elevated in rats expressing nontruncated human troponin T. In DEL-TnT rats, myofibrillar Ca2+-dependent tension development as well as Ca2+ sensitivity of tension were significantly decreased, whereas tension-dependent ATP consumption (“tension cost”) was markedly increased. Thus, a C-terminal truncation of the cardiac TnT molecule impairs the force-generating capacity of the cycling cross-bridges resulting in increased tension-dependent ATP utilization. Taken together, our data support the hypothesis of energy compromise as a contributing factor in the pathogenesis of FHC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    29
    Citations
    NaN
    KQI
    []