Creep rupture behavior of 9Cr–1.8W–0.5Mo–VNb (ASME grade 92) ferritic steel weld joint
2014
Abstract Creep rupture behavior of 9Cr–1.8W–0.5Mo–VNb (ASME grade 92) ferritic steel weld joint fabricated by activated TIG (A-TIG) welding process have been investigated at 923 K over a stress range of 80–150 MPa. The weld joint was comprise of fusion zone, heat affected zone (HAZ) and base metal. The HAZ consisted of coarse prior-austenite grain (CGHAZ), fine prior-austenite grain (FGHAZ) and intercritical (ICHAZ) regions in an order away from the fusion zone to base metal. A hardness trough was observed at the outer edge of HAZ of the weld joint. TEM investigation revealed the presence of coarse M 23 C 6 precipitates and recovery of martensite lath structure into subgrain in the ICHAZ of the weld joint, leading to the hardness trough. The weld joint exhibited lower creep rupture lives than the base metal at relatively lower stresses. Creep rupture failure location of the weld joint was found to shift with applied stress. At high stresses fracture occurred in the base metal, whereas failure location shifted to FGHAZ at lower stresses with significant decrease in rupture ductility. SEM investigation of the creep ruptured specimens revealed precipitation of Laves phase across the joint, more extensively in the FGHAZ. On creep exposure, the hardness trough was found to shift from the ICHAZ to FGHAZ. Extensive creep cavitation was observed in the FGHAZ and was accompanied with the Laves phase, leading to the premature type IV failure of the steel weld joint at the FGHAZ.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
28
References
81
Citations
NaN
KQI